ANNIHILATION OF REAL CLASSES

by

Jean-Robert Belliard & Anthony Martin

Abstract. — Let F be a number field, abelian over \mathbb{Q} and let p be a prime unramified in F. In this note we prove that Solomon's ψ_F element annihilates the torsion of the Galois group of the maximal abelian p-ramified p-extension of F. This is another unconditional proven reinforcement of All theorem [All13] which was conjecture 4.1 of [Sol92].

1. Introduction

Let F be a number field, abelian over \mathbb{Q} , and fix a prime $p \neq 2$. For all $n \in \mathbb{N}$ fix ζ_n a primitive n^{th} root of unity in a coherent way, e.g. take $\zeta_n = e^{2i\pi/n}$. Let fbe the conductor of F, so that $F \subset \mathbb{Q}(\zeta_f)$ and f is minimal with respect to that property. Let X_F denotes the p-part of the ideal class group of F. The Galois group $\Delta_F = \Delta = \text{Gal}(F/\mathbb{Q})$ acts onto X_F in a natural way, turning it into a $\mathbb{Z}_p[\Delta]$ module. One of the main challenge of algebraic number theory is to understand the structure of this object. As this is a finite module, a starting point would be to describe its annihilator or to find some canonical annihilators. If F is imaginary the Stickelberger element is such canonical element for the minus part of X_F . However if F is real this Stickelberger element is a multiple of the absolute trace, hence the annihilation statement is trivial. Assume that F is totally real. Fix once and for all an embedding of $\overline{\mathbb{Q}}$ in the field of complex number \mathbb{C} and another embedding $\iota_v: \overline{\mathbb{Q}} \longrightarrow \mathbb{C}_p$ in the Tate field \mathbb{C}_p . This embedding uniquely defines a place v above p in F. Let $F_v \in \mathbb{C}_p$ be the closure of F and let \mathcal{O}_v be the local valuation ring at v. In [**Sol92**] Solomon defined an element $\psi_F \in \mathcal{O}_v[\Delta]$ as follows

$$\psi_F := \frac{1}{p} \sum_{\delta \in \Delta_F} \log_p \iota_v \left(N_{\mathbb{Q}(\zeta_f)/F} (1 - \zeta_f)^{\delta} \right) \delta^{-1},$$

and stated the conjecture :

Conjecture 1.1 ([Sol92], conjecture 4.1). — ψ_F annihilates $X_F \otimes \mathcal{O}_v$.

Let us state a few historical remarks, for which we need some more notations. Let \mathfrak{X}_F be the Galois group of the maximal abelian *p*-ramified *p*-extension of *F* and let

 $t\mathfrak{X}_F \subset \mathfrak{X}_F$ be its \mathbb{Z}_p -torsion module. Let also \mathcal{D}_F be the sub-module of X_F generated the places dividing p.

- 1. If $p \nmid |\Delta|$ (so called semi-simple case) then conjecture 1.1 follows from the Main Conjecture of Iwasawa theory (here Mazur-Wiles theorem [**MW84**]) : see remark 4.1 (*ii*) of [**Sol92**].
- 2. Theorem 4.1 of [Sol92] proves that ψ_F annihilates $\mathcal{D}_F \otimes \mathcal{O}_v$.
- 3. If f is composite and if p is totally split in F, then theorem 5.4 of [BNQD05] proves conjecture 1.1.
- 4. In full generality the theorem 1.1 of [All13] is a proven reinforcement of conjecture 1.1.

The point here is to construct global explicit annihilators of all $X_F \otimes \mathcal{O}_v$ inside $\mathbb{Z}_p[\Delta]$ without using χ -eigenspaces, so the semi-simple cases are not relevant to this problem. The main result of this note is

Theorem 1.2. — ψ_F annihilates $t\mathfrak{X}_F \otimes \mathcal{O}_v$.

As $t\mathfrak{X}_F$ maps surjectively onto X_F , this theorem is another reinforcement of conjecture 1.1.

The theorem 1.2 reinforces conjecture 1.1, but it also proves that the element ψ_F is not a real analogue of Stickleberger element, in the sense that ψ_F is more naturally associated to $t\mathfrak{X}_F$ than to X_F . The interested reader should consult [NQDN11] and the pioneering work [Sol09] where a better real analogue of Stickelberger ideal are introduced and studied. The strategy to prove theorem 1.2 is quite simple. One first use Iwasawa theory to consider objects \mathfrak{X}_{∞} and X_{∞} defined by replacing Fwith its cyclotomic \mathbb{Z}_p -extension F_{∞} . Then one use Coleman theory to define a global power series $Col(\eta_f) \in \mathcal{O}_v[\Delta][[T]]$ such that ψ_F is recovered from $Col(\eta_f)$ simply by setting T = 0. Now by classical Iwasawa's Main Conjecture, which is a statement about χ -parts, all χ components of $Col(\eta_f)$ annihilates all χ -parts of \mathfrak{X}_{∞} . But the point here is that \mathfrak{X}_{∞} has simultaneously no finite sub-module and trivial μ -invariant, contrary to X_{∞} which is conjectured to be finite. Therefore the global elements $Col(\eta_f)$ actually annihilates full \mathfrak{X}_{∞} and theorem 1.2 follows by taking co-invariants.

2. Setting

Let us recall the analytic and algebraic setting of Iwasawa Main Conjecture.

2.1. Galois setting. — Fix once and for all a number field F, abelian over \mathbb{Q} , real, and of conductor f. Fix a prime number $p \neq 2$ such that $p \nmid f$. For all integer n, the field F_n will be the *n*-th step of the cyclotomic \mathbb{Z}_p -extension of F, so that $[F_n:F] = p^n$. Also we put $K_n = F(\zeta_{p^n})$ and $\Delta_{K_n} = \operatorname{Gal}(K_n/\mathbb{Q}), \Delta_{F_n} = \operatorname{Gal}(F_n/\mathbb{Q})$. As $p \nmid f$, we have $K_n = F_n(\zeta_p)$. Set also $F_\infty = \bigcup_n F_n$ and $K_\infty = \bigcup_n K_n$. By disjoint ramification the relevant extensions are split and we have direct product of various Galois groups as follows :

$$\Delta_{F_n} \simeq \Delta_F \times \operatorname{Gal}(F_n/F) \simeq \Delta_F \times \mathbb{Z}/p^n \mathbb{Z};$$
$$\Delta_{K_n} \simeq \Delta_F \times \operatorname{Gal}(K/F) \times \operatorname{Gal}(K_n/K) \simeq \Delta_F \times \mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}/p^n \mathbb{Z}.$$

The whole Galois setting is summarized as follows

For any finite abelian group G and any valuation ring \mathcal{O} of a finite extension of \mathbb{Q}_p , we will denote by $\Lambda_{\mathcal{O}}[G]$ the Iwasawa algebra

$$\Lambda_{\mathcal{O}}[G] = (\varprojlim \mathcal{O}[\mathbb{Z}/p^n\mathbb{Z}])[G] \simeq \mathcal{O}[G][[T]].$$

If $\mathcal{O} = \mathbb{Z}_p$ we simply note $\Lambda[G] = \Lambda_{\mathcal{O}}[G]$. Moreover we will note ω the *Te-ichmüller* character defined by the embedding ι_v . Precisely we have for all a in \mathbb{Z} either $p \mid a$ and $\omega(a) = 0$ either (a, p) = 1 and $\omega(a)$ is the unique $(p - 1)^{\text{th}}$ root of unity (simultaneously in \mathbb{C} and \mathbb{C}_p) such that $v(\omega(a) - a) > 0$. Identifying $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ with $(\mathbb{Z}/p\mathbb{Z})^{\times}$, this character describes the action of Galois on the p^{th} -power root of unity as for all g and all such root of unity ζ we have $g(\zeta) = \zeta^{\omega(g)}$, the right hand side being well defined because $\omega(g) \in \mathbb{Z}_p$. We also will denote by κ : $\operatorname{Gal}(\mathbb{Q}(fp^{\infty})/\mathbb{Q}(f)) \xrightarrow{\sim} \mathbb{Z}_p^{\times}$ the canonical isomorphism (abusively called cyclotomic character). For all a in \mathbb{Z}_p^{\times} we will denote σ_a the element of $\operatorname{Gal}(\mathbb{Q}(\zeta_{fp^{\infty}}|\mathbb{Q}))$ such that $\kappa(\sigma_a) = a$.

2.2. Analytic side. — The *p*-adic *L* function is defined by interpolating the values of the complex *L* functions at negative integers. To be more precise let us recall a fex classical notations. Let χ be a Dirichlet character, assumed to be *primitive* modulo *f*. Via the Artin map the character χ may be seen as a Galois Character, actually a character of $Gal(\mathbb{Q}(\zeta_f)|\mathbb{Q})$. Let $\mathbb{Q}(\chi) \subset \overline{\mathbb{Q}}$ be the field generated over \mathbb{Q} by the values of χ . The χ -twisted Bernoulli numbers $B_{n,\chi} \in \mathbb{Q}(\chi)$ are defined by

the power series expansion

$$\sum_{a=1}^{f} \frac{\chi(a)se^{as}}{e^{fs} - 1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{s^n}{n!}.$$

The complex L function $L(s, \chi)$ takes algebraic values at negative integers. Indeed according to [Was97] theorem⁽¹⁾ one has :

$$L(1-n,\chi) = -\frac{B_{n,\chi}}{n}.$$

Now by making use of the fixed embedding ι_v it is possible to interpolate these values with a \mathbb{C}_p valued function.

Theorem 2.1 (cf. [Was97] theorem 5.11). — Exists a unique meromorphic function $L_p(.,\chi)$ (which is holomorphic if $f \neq 1$) defined on the open ball $\{s \in \mathbb{C}_p | |s| < pp^{-1/p-1}\}$ and such that for all $n \geq 1$:

$$L_p(1-n,\chi) = -(1-\chi\omega^{-n}(p)p^{n-1})\frac{B_{n,\chi\omega^{-n}}}{n} = (1-\chi\omega^{-n}(p)p^{n-1})L(1-n,\chi\omega^{-n}).$$

Remark 2.2. — If $f \neq 1$, then one has the Leopoldt formula (see [Was97] theorem 5.18)

$$L_p(1,\chi) = -\left(1 - \frac{\chi(p)}{p}\right) \frac{\tau(\chi)}{f} \sum_{a=1}^f \chi(a)^{-1} \log_p i_v (1 - \zeta_f^a),$$

where $\tau = \tau(\chi) = \sum_{a=1}^{a=f} \chi(a) \zeta_f^a$ is the Gauß sum associated to χ . Therefore the Solomon's element ψ_F is obviously related to these values at 1.

These *p*-adic *L* functions are uniquely determined by this interpolation properties. Their original definition using Mahler development of partial zeta functions does not fully reveal their real nature. Later on Iwasawa discovered a far more concrete definition by using a sequence of Stickelberger elements to obtain a power series development of these functions. These power series are elements of $\mathbb{Z}_p(\chi)[[T]]$.

Definition 2.3. — The Stickelberger element $\xi_{\mathbb{Q}_{\zeta_{fp^n}}}$ related to $\mathbb{Q}(\zeta_{fp^n})$ is defined by the formula

$$\xi_{\mathbb{Q}(\zeta_{fp^n})} = \frac{1}{fp^n} \sum_{(a,fp)=1;a=1}^{a=fp^n-1} \left(\frac{fp^n}{2} - a\right) \sigma_a^{-1} \in \mathbb{Q}[\operatorname{Gal}(\mathbb{Q}(\zeta_{fp^n})/\mathbb{Q})].$$

By definition the Stickelberger element related to K_n is the element deduced from $\xi_{\mathbb{Q}(\zeta_{fp^n})}$ by restriction from $\operatorname{Gal}(\mathbb{Q}(\zeta_{fp^n})/\mathbb{Q})$ to Δ_{K_n} .

$$\xi_{K_n} = \frac{1}{fp^n} \sum_{(a,fp)=1;a=1}^{a=fp^n-1} \left(\frac{fp^n}{2} - a\right) (\sigma_a^{-1})_{|_{K_n}} \in \mathbb{Q}[\Delta_{K_n}].$$

One can then show that

(1) completer la ref

1. Let $\vartheta_{\mathbb{Q}(\zeta_{fp^n})} = (1 - (1 + fp)(\kappa^{-1}(1 + fp))^{-1}) \xi_{\mathbb{Q}(\zeta_{fp^n})}$. Then one has $\vartheta_{\mathbb{Q}(\zeta_{fp^n})} \in \mathbb{Z}_p[\operatorname{Gal}(\mathbb{Q}(\zeta_{fp^n})/\mathbb{Q})],$

so that its restriction ϑ_{K_n} to $\mathbb{Q}[\Delta_{K_n}]$ is also a *p*-adic integral element actually an element of $\mathbb{Z}_p[\Delta_{K_n}]$

2. The sequences $(\xi_{K_n})_{n\in\mathbb{N}}$ and therefore $(\vartheta_{K_n})_{n\in\mathbb{N}}$ are coherent with respect to restrictions maps along the towers $\mathbb{Q}(fp^{\infty})/\mathbb{Q}(f)$ and K_{∞}/K .

As the ϑ_{K_n} are coherent along K_{∞}/K we may consider the limit $\vartheta_{K_{\infty}} \in \Lambda(\Delta_K)$. Let $\chi^* = \chi^{-1}\omega$ be the mirror character of χ . Then χ^* is a Dirichlet character of Δ_K . As all other character of Δ_K our χ^* extends linearly to a ring homomorphism $\chi^* \colon \Lambda(\Delta_K) \longrightarrow \Lambda(\chi)$, where $\Lambda(\chi)$ is just the ring obtained by adjoining to Λ the values of χ . Let us fix the topological generator $\gamma = \kappa^{-1}(1 + fp)$ of $\Gamma = \operatorname{Gal}(K_{\infty}/K)$. Then sending γ to 1 + T uniquely define the Serre's isomorphism $\mathcal{S} \colon \Lambda(\chi) \simeq \mathbb{Z}_p(\chi)[[T]].$

Definition 2.4. — We may now define the three relevant Iwasawa's power series attached to our Dirichlet character χ :

1.
$$g(T, \chi) = \mathcal{S}(\chi^*(\vartheta_{K_{\infty}})) \in \mathbb{Z}_p(\chi)[[T]]$$

2. $h(T, \chi) = 1 - \frac{1+pf}{1+T} \in \mathbb{Z}_p[[T]];$
3. $f(T, \chi) = \frac{g(T, \chi)}{h(T, \chi)} \in \mathbb{Z}_p(\chi)[[T]].$

Iwasawa in [Iwa69] discovered that these series would provide another definition of the functions $L_p(s, \chi)$. This definition turned out to be far more enlightening than the original one.

Theorem 2.5 ([Iwa69]). — Let χ be an even character of Δ_K . Then for all $s \in \mathbb{C}_p$ such that $|s| < pp^{-1/(p-1)}$ (and $s \neq 1$ if χ is trivial) we have

$$L_p(s,\chi) = f((1+fp)^s - 1,\chi).$$

2.3. Algebraic side. — For all number field F recall that

 $-X_F$ is the *p*-part of the class group of *F*.

 $-\mathfrak{X}_k$ is the Galois group of the maximal abelian *p*-ramified *p*-extension of *F*.

We $X_{\infty} = \varprojlim X_{F_n}$, $\mathfrak{X}_{\infty} = \varprojlim \mathfrak{X}_{F_n}$ (with respect to norms and restriction maps). These are finitely generated $\Lambda(\Delta_F)$ -modules and are linked together by the exact sequence

$$0 \to \overline{E}_{\infty} \to \mathcal{U}_{\infty} \to \mathfrak{X}_{\infty} \to X_{\infty} \to 0$$

where

- $-\overline{E}_{\infty}$ is the direct limit of the $\overline{E}_n = E_n \otimes \mathbb{Z}_p$ where the E_n are the global units of the F_n .
- $-\mathcal{U}_{\infty}$ is the direct limit of the semi-local units of the F_n .

By the weak Leopoldt conjecture (here a theorem) the Λ -module \mathfrak{X}_{∞} is torsion. In particular, for all character χ of Δ_F , the χ -part $\mathfrak{X}_{\infty}^{\chi}$ is a finitely generated torsion $\mathbb{Z}_p(\chi)[[T]]$ -module. We therefore may consider its characteristic series that we will denote $c.s.(\mathfrak{X}_{\infty}^{\chi})$.

Remark 2.6. — It is a well known theorem of Iwasawa (see [**Iwa59**]) that $\mathfrak{X}_{\infty}^{\chi}$ has no non-trivial finite Λ -submodule. In particular it is annihilated by its characteristic series.

2.4. Main conjecture. — The main conjecture of Iwasawa relevant to this context may be stated as follows :

Theorem 2.7 (Mazur-Wiles). — For all character χ of Δ_F we have

$$s.c.(\mathfrak{X}_{\infty}^{\chi})(T) = f^{\sharp}(T,\chi)$$

where, by definition, the Iwasawa's involution \sharp is given by

$$f^{\sharp}(T,\chi) = f\left(\frac{1+fp}{1+T} - 1,\chi\right).$$

The mirror Stickelberger series $f^{\sharp}(T,\chi)$ plays an important role here. Another (equivalent) statement of the main conjecture is the following equality of characteristic series :

$$s.c.(\mathfrak{X}_{\infty}^{\psi})(T) = s.c.(\mathcal{U}_{\infty}/\mathcal{C}_{\infty})^{\psi}(T),$$

where \mathcal{C}_{∞} stands by definition for the direct limit of circular units of the F_n .

3. Solomon's element

Recall that for an abelian totally real field F such that p is unramified in F the Solomon's element is defined by the formula

$$\psi_F := \frac{1}{p} \sum_{\delta \in \Delta_F} \log_p \left(\iota_v(N_{\mathbb{Q}(\zeta_f)/F}(1-\zeta_f)^{\delta}) \right) \ \delta^{-1}$$

Our goal in that section is to use Coleman theory to relate this ψ_F to the constant term of a power series that annihilates \mathfrak{X}_{∞} .

3.1. Coleman's theory. — This theory is essentially a *local* one and it stands for any unramified extension of \mathbb{Q}_p . Let $\mathcal{O}_v[[X]]$ be the ring of formal power series in one indeterminate X with coefficient in \mathcal{O}_v . It is important here not to mix the Coleman X with the Iwasawa's T. Let $\mathcal{O}_v((X))$ be the field of fraction of $\mathcal{O}_v[[X]]$. We will also denote $\Gamma^{\times} = Gal(\mathbb{Q}_p(\zeta_{p^{\infty}})/\mathbb{Q}_p)$; this notation is coherent with the previous notation $\Gamma = Gal(K_{\infty}/K)$.

The rings $\mathcal{O}_v[[X]]$ and $\mathcal{O}_v((X))$ are endowed with :

- 1. the action of a Frobenius φ such that $f^{\varphi}(X) = f((1+X)^p 1)$.
- 2. a norm operator \mathcal{N} uniquely determined by $\mathcal{N}(f^{\varphi})(X) = \prod_{\xi \in \mu_n} f(\xi(1+X)-1).$

3. an action of $\mathbb{Z}_p[[\Gamma^{\times}]]$ which extends by linearity and continuity the action of Γ^{\times} defined by $\gamma.(1 + X) = (1 + X)^{\kappa(\gamma)}$ for all $\gamma \in \Gamma^{\times}$ (recall that κ is the cyclotomic character).

Theorem 3.1 (Coleman). — Let $(\alpha_n) = \alpha \in \varprojlim F_v(\zeta_{p^n})^{\times}$ be a norm coherent sequence of local numbers. Then there exists a unique power series $f_{\alpha} \in \mathcal{O}_v((X))^{\times}$ such that

$$f_{\alpha}(\zeta_{p^{n+1}}-1) = \alpha_n \quad and \quad \mathcal{N}f_{\alpha} = f_{\alpha}^{\varphi}.$$

Let Col: $\lim_{\to \infty} F_v(\zeta_{p^n})^{\times} \longrightarrow \mathcal{O}_v((X))$ be the map defined by

$$Col(\alpha) = (1 - \frac{\varphi}{p})\log_p f_\alpha(X) = \frac{1}{p}\log_p \frac{\left(f_\alpha(X)\right)^p}{f_\alpha^{\varphi}(X)}.$$

Then Col induces an exact sequence

$$1 \longrightarrow \mathbb{Z}_p(1) \longrightarrow U^1_{\infty} \xrightarrow{Col} \mathcal{R} \xrightarrow{\epsilon} \mathbb{Z}_p(1) \to 0.$$

where

- $-U_{\infty}^{1}$ is the direct limit of the principal units of $F_{v}(\zeta_{p^{n}})$;
- $-\mathcal{R}$ is a rank one free $\mathcal{O}_{v}[[\Gamma^{\times}]]$ -module generated by (1+X);
- $-\mathbb{Z}_p(1)$ is the direct limit of the (ζ_{p^n}) ;
- $-\epsilon$ is the map $f \mapsto Df_{X=0}$ where $D = (1+X)\frac{d}{dX}$.

It is useful to consider another related exact sequence that is obtained by using the *Mellin transform* \mathcal{L} of *Col* with values in $\mathcal{O}_v[[\Gamma^{\times}]]$ instead of \mathcal{R} . Let us briefly restate this definition : We saw that \mathcal{R} is a rank one free $\mathcal{O}_v[[\Gamma^{\times}]]$ generated by (1 + X). Hence all element $g \in \mathcal{R}$ may uniquely be written as $g(X) = \hat{g}.(1 + X)$ with $\hat{g} \in \mathbb{Z}_p[[\Gamma^{\times}]]$. The element \hat{g} (also denoted by Mel(g)) is called the Mellin transform of g and we define $\mathcal{L} = Mel \circ Col$.

3.1.1. Formulas. — We need to give a dictionary of formulas between \mathcal{R} and $\mathcal{O}_v[[\Gamma^{\times}]]$. For all $\hat{g} = \sum a_n \gamma^n \in \mathcal{O}_v[[\Gamma^{\times}]]$ and all characters ψ of Γ^{\times} we note $\psi(\hat{g}) = \sum a_n \psi(\gamma)^n \in \mathbb{Z}_p(\psi)$. Recall that

$$\sum a_n \gamma^n \cdot (1+X) = \sum a_n (1+X)^{\kappa^n(\gamma)}$$

where κ is the cyclotomic character. It follows that for all $g \in \mathcal{R}, i \in \mathbb{Z}$

- $-g(0) = \mathbb{1}(\hat{g})$ (where $\mathbb{1}$ stands for the trivial character).
- $-D^{i}g = Tw^{i}(\hat{g})$, where if $\hat{g} = \sum a_{n}\gamma^{n}$ then $Tw^{i}(\hat{g}) = \sum a_{n}(\kappa^{i}(\gamma)\gamma)^{n}$

One has in particular $(D^i g)_{X=0} = \mathbb{1}(Tw^i(\hat{g})) = \kappa^i(\hat{g})$. With all these formulas and notation the twin sequence of the exact sequence of Coleman is now

(1)
$$1 \longrightarrow \mathbb{Z}_p(1) \longrightarrow U^1_{\infty} \xrightarrow{\mathcal{L}} \mathcal{O}_v[[\Gamma^{\times}]] \xrightarrow{\kappa} \mathbb{Z}_p(1) \to 0.$$

3.1.2. Induction. — Let L be the splitting field at p of F, so that p is totally split in L/\mathbb{Q} and that primes above p remains inert in F/L. In order to recover global information for our field F from the local information collected in F_v one first need to induce along $\operatorname{Gal}(L/\mathbb{Q})$ and consider first the "semi-local" situation. We have $\operatorname{Gal}(F_v/\mathbb{Q}_p) \simeq \operatorname{Gal}(F/L)$. Let us abbreviate $\Delta_L = \operatorname{Gal}(L/\mathbb{Q})$. We apply the (exact) functor $- \otimes_{\mathbb{Z}_p[\operatorname{Gal}(F/L)]} \mathbb{Z}_p[\Delta_F]$ to the sequence (1). We get (see also[**Tsu99**]) :

(2)
$$0 \longrightarrow \mathbb{Z}_p[\Delta_L](1) \longrightarrow \mathcal{U}_{\infty} \longrightarrow \widehat{\mathcal{O}}_F[[\Gamma^{\times}]] \longrightarrow \mathbb{Z}_p[\Delta_L](1) \longrightarrow 0,$$

where $\widehat{\mathcal{O}}_F := \mathcal{O}_F \otimes \mathbb{Z}_p \simeq \mathbb{Z}_p[\Delta_F] \simeq \mathcal{O}_v \otimes_{\mathbb{Z}_p[\operatorname{Gal}(F/L)]} \mathbb{Z}_p[\Delta_F] \simeq \mathcal{O}_v[\Delta_L]$ because \mathcal{O}_v is Galois free (recall that p is unramified in F).

3.2. cyclotomic units and Solomon's element. — Consider the cyclotomic elements $\eta_{F_n} := N_{\mathbb{Q}(\zeta_{fp^n})/F_n}(1-\zeta_{fp^n})$. These numbers are cyclotomic units of F_n (recall that $f \neq 1$) and they form a norm coherent sequence (this follows from the well known distribution relation satisfied by the numbers $1-\zeta_n$). This allows us to define :

Definition 3.2. — Soit

$$\eta_{F,\infty} = \left(N_{\mathbb{Q}(\zeta_{fp^n})/F_n} (1 - \zeta_{fp^n}) \right)_{n \in \mathbb{N}}.$$

This is an element of $\varprojlim \mathcal{O}_{F_n}^{\times}$ that may be seen as an element of \mathcal{U}_{∞} using the diagonal embedding.

We can now state and prove the key result of this note :

Theorem 3.3. — The Solomon's element ψ_F is nothing more than

$$\psi_F = \frac{1}{p-1} \mathbb{1} \left(\mathcal{L}(\eta_{F,\infty}) \right)$$

Proof. — By the formulas given in 3.1.1 we have $\mathbb{1}(\mathcal{L}(\eta_F)) = Col(\eta_{F,\infty})(0)$, so that the theorem is equivalent to the identity

$$(p-1)\psi_F = Col(\eta_{F,\infty})(0).$$

We shall check this equality. First remark that the set of *p*-places of *F* is in one to one correspondence with Δ_L via the map

$$\begin{array}{rcl} \Delta_L & \leftrightarrow & \{v, \mid v \text{ is above } p\} \\ \delta & \mapsto & \delta^{-1}v \end{array}$$

Hence for all $\delta \in \Delta_L$, the δ -component of $\eta_{F,\infty}$ (seen as an element of \mathcal{U}_{∞}) is

$$\iota_v(N_{\mathbb{Q}(\zeta_{fp^n})/F_n}(1-\zeta_f^{\delta^{-1}}\zeta_{p^n}))_n$$
.

Therefore we locally have (at the corresponding place $\delta^{-1}v$) that the associated Coleman series is

$$\iota_v\bigg(\prod_{\sigma\in Gal(\mathbb{Q}(\zeta_f)/F)}1-\zeta_f^{\sigma\delta^{-1}}(1+X)\bigg).$$

Therefore, and still at the place $\delta^{-1}v$, we obtain

$$Col(\eta_{f,\infty}) = \left(1 - \frac{\varphi}{p}\right) f_{\eta_{f,\infty}}(X)$$
$$= \frac{1}{p} \log_p \frac{\left(\prod 1 - \zeta_f^{\sigma\delta^{-1}}(1+X)\right)^p}{\prod \left(1 - \zeta_f^{\sigma\delta^{-1}}(1+X)^p\right)}$$

It follows that specializing at X = 0 we find that the δ -component of $Col(\eta_{f,\infty})(0)$ is

$$\frac{p-1}{p}\log_p \iota_v N_{\mathbb{Q}(\zeta_f)/F}(1-\zeta_f^{\delta^{-1}})$$

which is exactly (p-1) times the δ -component of ψ_F . \Box

We now prove that the power series related to $\eta_{f,\infty}$ annihilates \mathfrak{X}_{∞} .

Lemma 3.4. — The element $\mathcal{L}(\eta_{F,\infty})$ annihilates $\mathfrak{X}_{\infty} \otimes \mathcal{O}_{v}$.

Proof. — By the main conjecture, for all character χ of Δ_F , the characteristic series of $\mathfrak{X}^{\chi}_{\infty}$ (which annihilates $\mathfrak{X}^{\chi}_{\infty}$) is the same as the one of $(\mathcal{U}_{\infty}/\mathcal{C}_{\infty})^{\chi}$. But for all character χ of Δ_F the series $\chi(\mathcal{L}(\eta_F))$ is a multiple of the characteristic series of $(\mathcal{U}_{\infty}/\mathcal{C}_{\infty})^{\chi}$. This proves that $\chi(\mathcal{L}(\eta_F))$ annihilates $\mathfrak{X}^{\chi}_{\infty}$ for all χ . But the whole \mathfrak{X}_{∞} has no non-trivial *p*-torsion (Ferrero-Washington and Iwasawa for the finite Λ module, [**FW79**, **Iwa59**]). The result follows. \Box

Now our main result is

Theorem 3.5. — The Solomon elements ψ_F annihilates the \mathbb{Z}_p -torsion $t\mathfrak{X}_F$ of \mathfrak{X}_F .

Proof. — Putting together the theorem 3.3 and the lemma 3.4 and Iwasawa coinvariant we see that $(p-1)\psi_F$ annihilates $(\mathfrak{X}_{\infty})_{\Gamma}$. But these Iwawa co-invariant are known to be canonically isomorphic to $t\mathfrak{X}_F$. \Box

Remark 3.6. — It is an interesting but technically difficult question to precisely relate the global integral Coleman power series $\mathcal{L}(\eta_{F,\infty})$ with the global integral power series $\vartheta_{K_{\infty}} \in \Lambda(\Delta_K)$ and also to relate both to the Deligne-Ribet pseudomeasure. All these objects seems to be various avatar of the *p*-adic *L* function but there is some discrepancy between them. We hope to be able to say more in a future work.

References

- [All13] Timothy All, On p-adic annihilators of real ideal classes, J. Number Theory 133 (2013), no. 7, 2324–2338. MR 3035966
- [BNQD05] Jean-Robert Belliard and Thong Nguyen-Quang-Do, On modified circular units and annihilation of real classes, Nagoya Math. J. 177 (2005), 77–115.
- [FW79] Bruce Ferrero and Lawrence C. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. (2) **109** (1979), no. 2, 377–395. MR 528968 (81a:12005)
- [Iwa59] Kenkichi Iwasawa, On the theory of cyclotomic fields, Ann. of Math. (2) 70 (1959), 530–561. MR 0124320 (23 #A1634)

[Iwa69]	, On p-adic L-functions, Ann. of Math. (2) 89 (1969), 198–205. MR
[MW84]	0269627 (42 $\#4522$) B Mazur and A Wiles Class fields of abelian extensions of O Invent. Math
	76 (1984), no. 2, 179–330.
[NQDN11]	Thong Nguyen Quang Do and Vésale Nicolas, Nombres de Weil, sommes de Gauss et annulateurs galoisiens, Amer. J. Math. 133 (2011), no. 6, 1533–1571. MR 2863370
[Sol92]	David Solomon, On a construction of p-units in abelian fields, Invent. Math. 109 (1992), no. 2, 329–350.
[Sol09]	, Some New Maps and Ideals in Classical Iwasawa Theory with Applications, arXiv:0905.4336 (2009), 36.
[Tsu99]	Takae Tsuji, Semi-local units modulo cyclotomic units, J. Number Theory 78 (1999), no. 1, 1–26. MR 1706941 (2000f:11148)
[Was97]	Lawrence C. Washington, <i>Introduction to cyclotomic fields</i> , second ed., Grad- uate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575 (97h:11130)

March 23, 2014

ANTHONY MARTIN, Laboratoire de mathématiques de Besançon UMR 6623, Université de Franche-Comté, 16 route de Gray, 25030 Besançon cedex, FRANCE *E-mail* : anthony.martin@ens-lyon.org

JEAN-ROBERT BELLIARD, Laboratoire de mathématiques de Besançon UMR 6623, Université de Franche-Comté, 16 route de Gray, 25030 Besançon cedex, FRANCE *E-mail* : jean-robert.belliard@univ-fcomte.fr